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Chapter 8. Nuclear Spin Statistics 
Notes: 
• Most of the material presented in this chapter is taken from Bunker and Jensen 

(2005), Chap. 9, and Bunker and Jensen (1998), Chap. 8.  

8.1 The Complete Internal Wave Function Φint  
In Chapter 2 when dealing with the spin of the electrons, we found that it was necessary 
to take into account the Pauli principle. Namely, we had to ensure that the wave function 
of the molecule be antisymmetric under the exchange of two identical fermions, in this 
case electrons. We accomplished this by breaking up molecular electronic wave function 
Φelec,n  (after the use of the Born-Oppenheimer approximation) into a product of 
electronic orbital and spin functions (see equation (2.29)).  
In the case of the molecular nuclei, we are dealing with a slightly different problem in 
that not all of the nuclei have the same spin. In fact some nuclei will be bosons while 
others will be fermions. Again the Pauli principle will apply for any pair of identical 
fermion nuclei (i.e., the requirement of an antisymmetric wave function), but the wave 
function will remain unchanged under the exchange of any pair of identical bosons. 
Because of this potentially different nature of the nuclei, it has not been possible to 
formalize the treatment of nuclear spins in a manner exactly similar as was done for the 
electrons. In fact, we have so far avoided any discussion on the treatment of nuclear 
spins. Indeed, the rovibronic wave function Φrv,nj  derived in the previous chapters does 
not take into account the spins of the nuclei. To remedy this omission, we now define the 
complete internal wave function Φint  as follows 
 

 
Φint RN,σN,re ,σ e( ) = Φelec,n RN,re ,σ e( )Φrv,nj RN( )Φns,t σN( )

= Φrve
0 RN,re ,σ e( )Φns,t σN( ),

 (8.1) 

 
where Φns,t  is the nuclear spin function ( t  numbers the different spin functions), and 
RN , σN , re , and σ e  stand for the nuclear and electronic coordinates and spins, 
respectively. We see that we can consider the product Φrv,njΦns,t  to be the nuclear 
equivalent to Φelec,n , which, as stated above, is the product of electronic orbital and spin 
functions. The important thing to remember is that it is Φint , and not Φrve

0 , that is 
subjected to the Pauli principle. 

8.1.1 The Classification of the Complete Internal Wave Function 
We already know that the parity (+  or − ) of an irreducible representation, and therefore 
of a wave function, is defined by its transformation under the inversion operator E∗ . 
More precisely, given the effect of E∗  in Φint  
 
 E∗Φint = ±Φint ,  (8.2) 
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we can classify the internal wave function with respect to whether it has positive or 
negative parity. Alternatively, we can also investigate the transformation of Φint  under 
the odd or even permutations of fermions and bosons. That is, if we define Podd  and Peven  
as permutations of, respectively, odd and even number of pairs of fermions, then because 
of the Pauli principle we must have 
 

 
PoddΦint = −Φint

PevenΦint = Φint ,
 (8.3) 

 
irrespective of the details of the internal wave function. Permutations of any numbers of 
bosons will leave Φint  unchanged. Equations (8.3) can be used to identify two non-
degenerate irreducible representations from the MS group of a molecule, which will be in 
turn differentiated by the character of the inversion specified by equation (8.2), when it is 
an element of the group (see below). The representation with positive parity belongs to 
Γ+ , while the one with negative parity belongs to Γ− . 
For example, the MS group of water is C2v M( )  has the character shown in Table 8-1. 
Since H2O  is composed, in part, of two fermions (labeled 1 and 2), then it is seen that 
Γ+ = B2  and Γ− = B1 . If, on the other hand, we replace the hydrogen nuclei with 
deuterium nuclei, which are bosons, to get twice-deuterated water D2O , then Γ+ = A1  
and Γ− = A2 , as Φint  must now be left unchanged by the action of 12( ) .   

Table 8-1 – The character table for C2v M( ) , the MS group for water and twice-
deuterated water. 

C2v M( ) :  E  12( )  E∗  12( )∗  
A1 : 1  1  1  1  
A2 : 1  1  −1 −1 
B1 : 1  −1 −1 1  
B2 : 1  −1 1  −1 

 
It is often the case, however, that the inversion operator E∗  is not a symmetry element of 
the MS group of a given molecule (it is always included in the CNPI group). Take for 
example the case of the methyl fluoride (CH3F ) molecule whose MS group is C3v M( )  
(the corresponding character table is shown in Table 8-2). Evidently the inversion E∗  is 
not an element of this group. All is not lost however, since we can use the presence of the 
permutation-inversion 12( )∗  operator in the group to our advantage. Indeed, if we 
consider the two internal wave functions Φint A1( )  and Φint A2( )  that respectively 
generate the two one-dimensional irreducible representations A1  and A2 , then we can 
write 
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12( )∗ Φint A1( ) = E∗ 12( )Φint A1( )⎡⎣ ⎤⎦ = E

∗ −Φint A1( )⎡⎣ ⎤⎦ = Φint A1( )
12( )∗ Φint A2( ) = E∗ 12( )Φint A2( )⎡⎣ ⎤⎦ = E

∗ −Φint A2( )⎡⎣ ⎤⎦ = −Φint A2( ).
 (8.4) 

 

Table 8-2 – The character table or C3v M( ) , the MS group for methyl fluoride; the three 
proton are labeled 1, 2, and 3. 

C3v M( ) : E
1

 123( )
2

 12( )∗
3

 

A1  1  1  1  
A2  1  1  −1 
E  2  −1 0  

 
But as is made explicit in equations (8.4), this operator consists of the combination of an 
odd permutation of fermions (i.e., 12( ) ) and the inversion E∗ . Because of the 
aforementioned definition of the parity of a wave function in relation to its transformation 
under E∗ , and the demands of the Pauli principle concerning the permutation of pairs of 
fermions, we can generalize the results of equations (8.4) with 
 

 
 

Peven
∗ Φint Γ±( ) = ±Φint Γ±( ).
Podd

∗ Φint Γ±( ) = Φint Γ±( )  (8.5) 

 
That is, the Γ±  representation has the character ±1  under any Peven

∗  operators and the 
character  1  under any Podd

∗  operators. Using this definition we find that 
 
 Γ+ = A2 and Γ− = A1  (8.6) 
 
for the methyl fluoride molecule. 
When the inversion and all permutation-inversion operators are unfeasible (i.e., none are 
part of the MS group), then the internal wave functions cannot be assigned a definite 
parity label and Γ+ = Γ− . Parity can be used to label the internal states of a molecule, but 
we prefer using the irreducible representations of the MS group for this purpose. 

8.2 The Classification of the Nuclear Spin Wave Functions 
The spin state of a nucleus is defined in the same way as that of an electron. That is, we 
have the operators Î 2  and ÎZ  for the square of the spin and its space-fixed Z-component , 
respectively, such that 
 

 
 

Î 2 I ,mI = I I +1( )2 I ,mI

ÎZ I ,mI = mI I ,mI ,
 (8.7) 
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where I ,mI  are the corresponding eigenvectors. For fermions the quantum numbers 
I  and mI  are half-integer numbers (with I > 0  and  mI = I −1, I − 2,…,1 2 ), while for 
bosons they are integers (with I ≥ 0  and  mI = I −1, I − 2,…,0 ). 

For example, the two hydrogen nuclei of a water molecule have I1 = I2 = 1 2 , and if, as 
usual, we define the two possible states for the spin of a given nucleus as 
 
 α = 1 2,1 2 and β = 1 2,−1 2 ,  (8.8) 
 
then the possible combined nuclei spin vectors for the molecule (the oxygen nucleus has 
I3 = 0 ) are 
 

 

mI = −1 : Φns,1 = β1β2 ,

mI = 0 : Φns,2 = α1β2 , Φns,3 = β1α2 ,

mI = 1 : Φns,4 = α1α2 ,

 (8.9) 

 
where mI  is for the total combined nuclear spin. If we investigate the transformation of 
the corresponding wave functions under the elements of the appropriate MS group (see 
Table 8-1) we find 
 

 

EΦns,t = Φns,t

12( )Φns,1 = Φns,1 12( )Φns,2 = Φns,3 12( )Φns,3 = Φns,2 12( )Φns,4 = Φns,4

E∗Φns,t = Φns,t

12( )∗ Φns,1 = Φns,1 12( )∗ Φns,2 = Φns,3 12( )∗ Φns,3 = Φns,2 12( )∗ Φns,4 = Φns,4 ,

 (8.10) 

 
where t = 1, 2, 3, and 4 . The corresponding character for the Γnspin  representation 
generated by the combined wave functions is 
 
 χΓnspin E[ ] = 4, χΓnspin 12( )⎡⎣ ⎤⎦ = 2, χΓnspin E∗⎡⎣ ⎤⎦ = 4, χΓnspin 12( )∗⎡⎣ ⎤⎦ = 2.  (8.11) 

 
Using equation (6.60) from Chapter 6  
 

 ai =
1
h

χΓnspin R[ ]χΓi R[ ]∗
R
∑ ,  (8.12) 

 
and Table 8-1 we find  
 
 Γnspin = 3Α1 ⊕ B2 . (8.13) 
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We can identify the four wave functions that correspondingly generate these four 
irreducible representations by using the projection operators (see equation (7.22) of 
Chapter 7) 
 

 PΓi =
1
h

χΓi R[ ]∗ R
R
∑  (8.14) 

 
to find 
 

 

ψ ns,1 A1( ) = Φns,1 = β1β2
ψ ns,2 A1( ) = Φns,4 = α1α2

ψ ns,3 A1( ) = 1
2

Φns,2 +Φns,3( ) = 12 α1β2 + β1α2( )
ψ ns,4 B2( ) = 1

2
Φns,2 − Φns,3( ) = 12 α1β2 − β1α2( ).

 (8.15) 

 
We therefore find that the three totally symmetric wave functions form the usual spin 
triplet state with I = 1  and mI = −1, 0, and 1, while the antisymmetric state is the usual 
spin singlet state where I = mI = 0 ; see equations (2.27) and (2.28) of Chapter 2. 

For D2O  the situation is somewhat more complicated since both deuterium nuclei have a 
spin I1 = I2 = 1 . There are therefore nine possible spin functions 
 

 

mI = 2 : Φns,1 = α1α2 ,

mI = 1 : Φns,2 = α1β2 , Φns,3 = β1α2 ,

mI = 0 : Φns,4 = α1γ 2 , Φns,5 = γ 1α2 , Φns,6 = β1β2 ,

mI = −1 : Φns,7 = β1γ 2 , Φns,8 = γ 1β2 ,

mI = −2 : Φns,9 = γ 1γ 2 ,

 (8.16) 

 
where this time we defined for a single spin i  
 
 α i = 1,1 , βi = 1,0 , and γ i = 1,−1 .  (8.17) 

 
Again we investigate the transformation of the combined spin functions taken as a whole 
to find 
 
 χΓnspin E[ ] = 9, χΓnspin 12( )⎡⎣ ⎤⎦ = 3, χΓnspin E∗⎡⎣ ⎤⎦ = 9, χΓnspin 12( )∗⎡⎣ ⎤⎦ = 3,  (8.18) 

 
which through equation (8.12) yields 
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 Γnspin = 6Α1 ⊕ 3B2 .  (8.19) 
 
The projection operators are then used, as is now custom, to give the corresponding 
symmetric and antisymmetric wave functions 
 

 

ψ ns,1 A1( ) = Φns,1 = α1α2

ψ ns,2 A1( ) = Φns,6 = β1β2
ψ ns,3 A1( ) = Φns,9 = γ 1γ 2

ψ ns,4 A1( ) = 1
2

Φns,2 +Φns,3( ) = 12 α1β2 + β1α2( )
ψ ns,5 A1( ) = 1

2
Φns,4 +Φns,5( ) = 12 α1γ 2 + γ 1α2( )

ψ ns,6 A1( ) = 1
2

Φns,7 +Φns,8( ) = 12 β1γ 2 + γ 1β2( ),

 (8.20) 

 
and 
 

 

ψ ns,7 B2( ) = 1
2

Φns,2 − Φns,3( ) = 12 α1β2 − β1α2( )
ψ ns,8 B2( ) = 1

2
Φns,4 − Φns,5( ) = 12 α1γ 2 − γ 1α2( )

ψ ns,9 B2( ) = 1
2

Φns,7 − Φns,8( ) = 12 β1γ 2 − γ 1β2( ).

 (8.21) 

8.3 The Determination of the Statistical Weights  
As was shown in equation (8.1), a complete internal wave function Φint  is a product of a 
rovibronic Φrve

0  and a spin Φns,t  wave functions. It follows from this that the 
representation Γ int  thus generated is 
 
 Γ int = Γ rve ⊗Γns,t .  (8.22) 
 
However, we also know from equations (8.3) that the only realized irreducible 
representations Γ int  are those that satisfy the Pauli principle. These representations are 
therefore easily determined with the character table of the MS group for the molecule 
under study. Moreover, we have just explored in the previous section how to determine 
the representations generated by the possible nuclear spin functions. These irreducible 
representations are also readily determined, at least in principle. So, given Γ int  and Γns,t  it 
will be possible to determine which are the rovibronic representations realized. 
Mathematically, the necessary condition can be written as 
 
 Γ rve ⊗Γns,t ⊃ Γ int .  (8.23) 
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For example, we already determine that for H2O and D2O  the only possible  
representations Γ int  are 
 

 
Γ int H2O( ) = B1  and B2

Γ int D2O( ) = A1  and A2 ,
 (8.24) 

 
respectively. Since we determined that for both molecules Γns,t = A1  and B2 , then the 
only possible rovibronic representations are 
 
 Γ rve = A1, A2 , B1, and B2  (8.25) 
 
for both molecules. This is because for H2O  
 

 

Γ rve ⊗Γns,t = Γ int

B1⊗ A1 = B1
B2 ⊗ A1 = B2
A1⊗ B2 = B2
A2 ⊗ B2 = B1,

 (8.26) 

 
while for D2O  
 

 

Γ rve ⊗Γns,t = Γ int

A1⊗ A1 = A1
A2 ⊗ A1 = A2
B1⊗ B2 = A2
B2 ⊗ B2 = A1.

 (8.27) 

 
Although every irreducible representations of the MS group are generated for both 
molecules, they are not realized with the same weight (i.e., the same number of times). 
That is, the presence of three H2O  nuclear spin functions with symmetry A1  implies that 
there will be three different complete internal wave functions of symmetry B1  or B2  
realized for every rovibronic wave functions (of similar symmetry) for that molecule. On 
the other hand, since there are six D2O  nuclear spin functions with symmetry A1  then 
there will be six different complete internal wave functions of symmetry A1  or A2  
realized for every rovibronic wave functions (of similar symmetry) for that molecule. The 
so-called spin statistical weight gns  corresponds to the number of times that a complete 
internal wave function of symmetry Γ int  is realized. The results for water and twice-
deuterated water are listed in Table 8-3. 
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For molecules like H2O  and D2O  where we are in presence of different values of spin 
statistical weights, the states with higher and lower gns  are called ortho and para states, 
respectively. 

Table 8-3 – The spin statistical weights of H2O and D2O . 

 H2O      D2O    
Γ rve  Γns,t  Γ int  gns   Γ rve  Γns,t  Γ int  gns  
A1  B2  B2  1   A1  6A1  A1  6  
A2  B2  B1  1   A2  6A1  A2  6  
B1  3A1  B1  3  B1  3B2  A2  3 
B2  3A1  B2  3  B2  3B2  A1  3 

8.4 Intensity Alternations and Missing Levels   
As we saw in the last section of Chapter 7, a perturbation term ˆ ′H  can be added to the 
Hamiltonian of an otherwise isolated molecule to model its interaction with an external 
agent (or alternatively some internal coupling such as for the hyperfine Hamiltonian). 
The representation ′Γ  generated by the perturbation Hamiltonian can be used to 
determine if a transition will occur between two states, according to the vanishing 
integral rule. 
As will be seen in a subsequent chapter, the perturbation Hamiltonian due to the 
interaction of the molecular electric dipole and an external radiation field generates the 
A2  representation for the H2O  and D2O  molecules. Therefore, radiative transitions 
between two states Γ1  and Γ2  will only be possible if 
 
 Γ1 ⊗ A2 ⊗Γ2 ⊃ Γ s( ) = A1.  (8.28) 
 
A quick study of the character table for these molecules (i.e., Table 8-1 for C2v M( ) ) will 
reveal that B1 ↔ B2  and A1 ↔ A2  transitions are possible for the complete internal wave 
functions of H2O  and D2O , respectively. Furthermore, an electric dipolar transition will 
not change the spin state of a molecule (since the electric dipole operator does not 
involve nuclear spins), but only the rovibronic state. So, for water there will respectively 
be three B1 ↔ B2  and one A1 ↔ A2  rovibronic transitions that satisfy these conditions. 
For D2O  there will be six A1 ↔ A2  and three B1 ↔ B2  allowed rovibronic transitions, 
respectively. In other words, for water the intensity of the effective B1 ↔ B2  rovibronic 
transition (resulting from the three individual transitions) will three times stronger than 
the single A1 ↔ A2  rovibronic transition because of their different associated spin 
statistical weights. For D2O  the effective A1 ↔ A2  rovibronic transition will be twice as 
strong as the corresponding B1 ↔ B2  rovibronic transition for the same reason. This 
phenomenon is referred to as intensity alternations. 
It is also possible that the conditions imposed by the Pauli principle and the nuclear spin 
statistics will rule out the existence of some molecular states. An example of this is the 
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H3
+  ion for which the MS group is D3h M( )  (see Table B.8 of Bunker and Jansen (2005)) 

and 
 
 Γspin = 4 ′A1⊕ 2 ′E . (8.29) 
 
Calculations such as the one performed above for H2O  and D2O  would yield the spin 
statistical weights shown in Table 8-4. As can be seen, the rovibronic ′A1  and ′′A1  
representations are not realized because no spin representation can combine with them to 
yield the representations Γ int = ′A2  and ′′A2  corresponding to the only allowed internal 
wave functions. Unrealized rovibronic representations correspond to so-called missing 
levels. 

Table 8-4 – Spin statistical weights for H3
+  

Γ rve  Γns  Γ int  gns  
′A1  __  __  0 
′′A1  __  __  0 
′A2  4 ′A1  ′A2  4 
′′A2  4 ′A1  ′′A2  4 
′E  2 ′E  ′A2  2 
′′E  2 ′E  ′′A2  2 

 

   
  
 
 
 
 
 
 


